
MATH 303 – Measures and Integration
Homework 6*

*This is the fifth homework assignment of the semester. I have given it the number 6 to match
with the lecture and exercise numbering, since there was no homework to accompany lecture 5.

Please upload a pdf of your solutions by 23:59 on Monday, November 4. The assignment will
be graded out of 16 points (8 for each problem). One problem will be checked for completeness and
the other will be graded on correctness and quality. More details on grading, as well as guidelines
for mathematical writing, can be found on Moodle.

Problem 1. Let µ be a locally finite Borel measure on R with distribution function F . For x ∈ R,
define F (x−) = limy→x− F (y). The limit exists since F is an increasing function.

(a) Show that µ({x}) = F (x)− F (x−).

(b) Deduce that µ is a continuous measure if and only if F is a continuous function.

Solution: (a) Let x ∈ R. For each n ∈ N, the set En =
(
x− 1

n , x
]
has measure

µ(En) = F (x)− F

(
x− 1

n

)
< ∞.

The sets (En)n∈N form a nested sequence E1 ⊇ E2 ⊇ . . . with
⋂

n∈NEn = {x}. Therefore, by
continuity from above of the measure µ,

µ({x}) = lim
n→∞

µ(En) = F (x)− lim
n→∞

F

(
x− 1

n

)
= F (x)− F (x−).

(b) Recall that the measure µ is continuous if and only if µ({x}) = 0 for every x ∈ R. The
distribution function F is always right-continuous, so F is continuous at a point x ∈ R if and
only if F (x−) = F (x). Therefore, by (a), F is continuous at x if and only if µ({x}) = 0. It
immediately follows that F is continuous on R if and only if µ is a continuous measure.

Problem 2. A family of sets C ⊆ P(X) is called a monotone class if it is closed under countable
monotone unions and intersections. That is,

• if (An)n∈N is a sequence in C and A1 ⊆ A2 ⊆ . . . , then
⋃

n∈NAn ∈ C, and

• if (Bn)n∈N is a sequence in C and B1 ⊇ B2 ⊇ . . . , then
⋂

n∈NBn ∈ C.

The goal of this problem is to prove the monotone class theorem.

(a) Show that a family of sets is a σ-algebra if and only if it is both an algebra and a monotone
class.

(b) Show that the intersection of a family of monotone classes is a monotone class.

(c) Let C be a monotone class. Show that C′ = {E ⊆ X : X \ E ∈ C} is also a monotone class.

(d) Let C be a monotone class. Show that CE = {F ⊆ X : E ∪ F ∈ C} is also a monotone class for
every E ⊆ X.



Let A ⊆ P(X) be an algebra on X, and let C(A) be the monotone class generated by A. (This
monotone class is well-defined by part (b).)

(e) Use part (c) to show that C(A) is closed under complementation.

(f) Use part (d) to show that C(A) is closed under finite unions.

(g) Deduce the monotone class theorem: C(A) = σ(A).

Solution: (a) Suppose B is a σ-algebra. Then B is an algebra, and B is closed under countable
unions and intersections (not only monotone ones), so B is a monotone class.

Conversely, suppose B is both an algebra and a monotone class. Since B is an algebra, we
have X ∈ B, and B is closed under complements. We need to show that B is closed under
countable (not necessarily monotone) unions. Let (En)n∈N be a sequence of elements of B. For
n ∈ N, let Fn =

⋃n
j=1Ej . Then F1 ⊆ F2 ⊆ . . . , and Fn ∈ B, since B is an algebra. Thus, since

B is a monotone class,
⋃

n∈NEn =
⋃

n∈N Fn ∈ B.

(b) Let (Ci)i∈I be a family of monotone classes on X, and let C =
⋂

i∈I Ci. Suppose (An)n∈N
is an increasing sequence in C. Then for each i ∈ I, (An)n∈N is an increasing sequence in Ci,
so
⋃

n∈NAn ∈ Ci, since Ci is a monotone class. Hence,
⋃

n∈NAn ∈
⋂

i∈I Ci = C. A similar
argument applies for decreasing sequences.

(c) We will prove that C′ is closed under increasing unions. Closure under decreasing
intersections follows similarly. Suppose (An)n∈N is an increasing sequence in C′. Then Bn =
X \An ∈ C defines a decreasing sequence in C, so

⋂
n∈NBn ∈ C. Therefore,⋃

n∈N
An =

⋃
n∈N

(X \Bn) = X \
⋂
n∈N

Bn ∈ C′.

(d) Let (An)n∈N be an increasing sequence in CE . Then (E ∪ An)n∈N is an increasing
sequence in C, so

E ∪

(⋃
n∈N

An

)
=
⋃
n∈N

(E ∪An) ∈ C.

Hence,
⋃

n∈NAn ∈ CE . Similarly, given a decreasing sequence (Bn)n∈N in CE , the sequence
(E ∩Bn)n∈N is a decreasing sequence of elements of C, so

E ∪

(⋂
n∈N

Bn

)
=
⋂
n∈N

(E ∪Bn) ∈ C,

whence
(⋂

n∈NBn

)
∈ CE .

(e) By (c), the family C(A)′ = {E ⊆ X : X \ E ∈ C(A)} is a monotone class. Moreover,
if A ∈ A, then X \ A ∈ A ⊆ C(A), so A ∈ C(A)′. Thus, C(A)′ is a monotone class con-
taining the algebra A. By construction, C(A) is the smallest monotone class containing A, so
C(A) ⊆ C(A)′. That is, for every E ∈ C(A), we have X \ E ∈ C(A), so C(A) is closed under
complementation.



(f) First let E ∈ A and consider C(A)E = {F ⊆ X : E ∪ F ∈ C(A)}. Since A ⊆ C(A)
and algebras are closed under finite unions, we have A ⊆ C(A)E . But by part (d), C(A)E is a
monotone class, so C(A) ⊆ C(A)E . Thus, for any E ∈ A and F ∈ C(A), we have E∪F ∈ C(A).

Now let F ∈ C(A) be arbitrary. By the previous paragraph, C(A)F = {E ⊆ X : E ∪ F ∈
C(A)} is a monotone class containing the algebra A, so C(A) ⊆ C(A)F . That is, for any two
sets E,F ∈ C(A), we have E ∪ F ∈ C(A).

(g) By (a), every σ-algebra is a monotone class. It therefore suffices to check that C(A) is
a σ-algebra. Using (a) again, we only need to check that C(A) is an algebra. Since X ∈ A,
we have X ∈ C(A). Finally, by parts (e) and (f), C(A) is closed under complements and finite
unions, so C(A) is an algebra.


